The shape of asymptotic dependence

نویسندگان

  • Guus Balkema
  • Paul Embrechts
  • Natalia Nolde
چکیده

Multivariate risk analysis is concerned with extreme observations. If the underlying distribution has a unimodal density then both the decay rate of the tails and the asymptotic shape of the level sets of the density are of importance for the dependence structure of extreme observations. For heavy-tailed densities, the sample clouds converge in distribution to a Poisson point process with a homogeneous intensity. The asymptotic shape of the level sets of the density is the common shape of the level sets of the intensity. For light-tailed densities, the asymptotic shape of the level sets of the density is the limit shape of the sample clouds. This paper investigates how the shape changes as the rate of decrease of the tails is varied while the copula of the distribution is preserved. Four cases are treated: a change from light tails to light tails, from heavy to heavy, heavy to light and light to heavy tails.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental and Mathematical Investigation of Time-Dependence of Contaminant Dispersivity in Soil

Laboratory and field experiments have shown that dispersivity is one of the key parameters in contaminant transport in porous media and varies with elapsed time. This time-dependence can be shown using a time-variable dispersivity function. The advantage of this function as opposed to constant dispersivity is that it has at least two coefficients that increase the accuracy of the dispersivity p...

متن کامل

Continuous dependence on coefficients for stochastic evolution equations with multiplicative Levy Noise and monotone nonlinearity

Semilinear stochastic evolution equations with multiplicative L'evy noise are considered‎. ‎The drift term is assumed to be monotone nonlinear and with linear growth‎. ‎Unlike other similar works‎, ‎we do not impose coercivity conditions on coefficients‎. ‎We establish the continuous dependence of the mild solution with respect to initial conditions and also on coefficients. ‎As corollaries of ...

متن کامل

Wavelet Linear Density Estimation for a GARCH Model under Various Dependence Structures

We consider n observations from the GARCH-type model: S = σ2Z, where σ2 and Z are independent random variables. We develop a new wavelet linear estimator of the unknown density of σ2 under four different dependence structures: the strong mixing case, the β- mixing case, the pairwise positive quadrant case and the ρ-mixing case. Its asymptotic mean integrated squared error properties are ...

متن کامل

Introducing a New Lifetime Distribution of Power Series Distribution of the Family Gampertz

In this Paper, We propose a new three-parameter lifetime of Power Series distributions of the Family Gampertz with decreasing, increasing, increasing-decreasing and unimodal Shape failure rate. The distribution is a Compound version of of the Gampertz and Zero-truncated Possion distributions, called the Gampertz-Possion distribution (GPD). The density function, the hazard rate function, a gener...

متن کامل

Asymptotics of the Effective Conductivity of Composites with Closely Spaced Inclusions of Optimal Shape

We consider a mathematical model of a high contrast two phase composite material with inclusions (fibres) close to touching in two space dimensions. The inclusions form a periodic array and have an optimal shape which is a curvilinear square with rounded-off angles (‘nearly square’ shape) described by a flattening parameter m. We derive an asymptotic formula for the effective conductivity Âδ of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010